
International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 8, March 2014

21

Comparative Study of Apriori Algorithms for Parallel

Mining of Frequent Itemsets

 Avani M. Sakhapara Bharathi H. N.
 Assistant Professor Associate Professor
 K. J. Somaiya College of Engineering K. J. Somaiya College of Engineering
 Mumbai University Mumbai University

ABSTRACT

Apriori Algorithms are used on very large data sets with high

dimensionality. Therefore parallel computing can be applied

for mining of association rules. The process of association

rule mining consists of finding frequent item sets and

generating rules from the frequent item sets. Finding frequent

itemsets is more expensive in terms of CPU power and

computing resources utilization. Thus majority of parallel

apriori algorithms focus on parallelizing the process of

frequent item set discovery. The computation of frequent item

sets mainly consist of creating the candidates and counting

them. The parallel frequent itemsets mining algorithms

addresses the issue of distributing the candidates among

processors such that their counting and creation is effectively

parallelized. This paper presents comparative study of these

algorithms.

General Terms
Data mining, algorithms, parallel processing, apriori

Keywords

Parallel data mining, frequent itemsets, association rules,

apriori algorithm

1. INTRODUCTION
Accumulation of abundant data from different sources of the

society but a little knowledge situation has lead to knowledge

discovery from databases which is called data mining. Data

mining techniques use the existing data and retrieve the useful

information from it which is not directly visible in the original

data. As data mining algorithms deal with huge data, the

primary concerns are how to store the data in the main

memory at run time and how to improve the run time

performance. Sequential algorithms cannot provide

scalability, in terms of the data dimension, size, or runtime

performance, for such huge databases. Because the data sizes

are increasing to a large quantity, high-performance parallel

and distributed computing is used to get the advantage of

more than one processor to handle these huge quantities of

data.

Data mining deals with large volumes of data to extract the

useful knowledge. Association Rule Mining (ARM) or

frequent itemset mining is an important functionality of data

mining. The apriori algorithm is one of the best algorithms for

finding frequent itemsets from a transaction database. As data

mining mainly deals with large volumes of data, the main

concern is how to improve the performance of the algorithm.

One way of improving the performance of apriori is

parallelizing the process of generating frequent itemsets.

The rest of the paper is organized as follows. In Section 2 the

related work is overviewed. In Section 3 the basic concepts of

association rule mining are discussed and apriori algorithm is

described. In Section 4 a comparative analysis of the parallel

apriori algorithms is given. In Section 5 conclusion is given.

2. RELATED WORK
Many parallel ARM algorithms have been proposed which

represent transactions using either horizontal data format or

vertical data format [4,7]. In horizontal data format, data is

represented as transaction ID versus items sold in each

transaction whereas in vertical data format, data is represented

as each item versus transaction ids in which the item is sold.

The parallel ARM algorithms are broadly classified as data set

partitioning Algorithms, Breadth-First Algorithms, Depth-

First Algorithms, Sampling Algorithms and Incremental

Update Algorithms[2,3]. There are several parallel association

rule mining algorithms proposed based on data set partitioning

like Count Distribution, Data Distribution, Candidate

Distribution, Common Candidate Partitioned, Eclat, Parallel

Partition [1,5,9,10]. There are various surveys carried out on

these algorithms[2,6,7,8].

3. ASSOCIATION RULE MINING

3.1 Basic Concept
The basic concept of association rule mining is originated

from the market basket analysis. Let D be the transaction

database which consists of the transaction records

{T1,T2,…,Tn} of the customers. Each transaction T consists

of the items purchased by the customers in one visit of the

super market. The items are the subset of the set of whole

items I {I1, I2,…., Im} in the super market that are considered

for analysis. An itemset consists of some combination of

items which occur together or a single item from I.

Association rule mining X->Y, represents the dependency

relationship between two different itemsets X and Y in the

database. The relationship is whenever X is occurring in any

transaction, there is a probability that Y may also occur in the

same transaction. This occurrence is based on two interesting

measures.

Support: It represents the percentage of transactions in D that

contain X ∪ Y and it is given by

support(X->Y) = (∪).

Confidence: It gives the percentage of transactions in D

containing X that also contain Y and it is given as

confidence(X->Y) = (/).

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 8, March 2014

22

3.2 Apriori Algorithm
Apriori algorithm is the most classical association rule mining

algorithm. It is based on the apriori principle that all the

nonempty subsets of a frequent itemset must be frequent. It is

a two step process.

Step 1: The prune step

It scans the entire database to find the count of each

candidate in Ck where Ck represents candidate k-

itemset. The count of each itemset in Ck is

compared with a predefined minimum support count

to find whether that itemset can be placed in

frequent k-itemset Lk.

Step 2: The join step

Lk is natural joined with itself to generate the next

candidate k+1-itemset Ck+1. The major step here is

the prune step which requires scanning the entire

database for finding the count of each itemset in

every candidate k-itemset. If the database is huge

then it requires more time to find all the frequent

itemsets in the database.

4. PARALLEL APRIORI ALGORITHMS

4.1 Count Distribution Algorithm [10]
Each processor generates the partial support of all candidate

itemsets from its local database partition in parallel. At the

end of each iteration the global supports are generated by

exchanging the partial support counts among all the

processors. All the processors generate the entire candidate

from Lk-1. Each processor thus independently compute the

partial supports of the candidates from its local database

partition. Then each processor exchanges its local counts of

Ck with all the other processors to generate the global Ck

counts. Each processor then computes Lk from Ck. Once the

global Lk has been determined, each processor builds Ck+1 in

parallel and repeats the process until all frequent itemsets are

found.

Advantages:

It minimizes the communication cost as only counts are

exchanged among the processors and speeds up the

summation process as only vector summation is to be carried

out rather than matching the candidates first and then finding

their sum.

Disadvantages:

Since the entire hash tree is replicated on each processor, it

does not utilize the total memory of the system efficiently.

4.2 Data Distribution Algorithm [10]
It generates the frequent 1-itemset by using count distribution

algorithm. It then partitions the candidates into disjoint sets

which are assigned to different processors. Each processor

calculates the support counts for the itemsets in its local

candidates by scanning the local partition and the remote

partitions to generate the local frequent itemsets in all

iterations. At the end of each iteration, processors exchange

local frequent itemsets with the other processors so that each

processor has the complete Lk for generating Ck+1.

Advantages:

It utilizes the total system memory efficiently by generating

disjoint candidate sets on each processor. The summation

need not be carried out since the local frequent itemsets are

disjoint.

Disadvantages:

It suffers from huge communication cost.

4.3 Candidate Distribution Algorithm [10]
For the initial passes it uses either Count Distribution or Data

Distribution algorithm. Then in some pass I which is

heuristically determined, this algorithm divides the frequent

itemsets Lk-1 among the processors in such a way that each

processor can generate unique candidate sets independent of

the other processors. Data is selectively replicated so that each

processor can calculate the counts of the candidate sets

independent of other processors.

Advantages:

It removes the processor dependence so that the processors

can proceed independently without synchronizing at the end

of each pass.

Disadvantages:

It suffers from huge communication cost of redistributing the

database and scans the local partitions repeatedly. The

communication gains of independent processing are not

sufficient to offset the database redistribution cost.

4.4 Common Candidate Partitioned

Algorithm(CCPD) [5]
It is same as the count distribution algorithm. It uses shared

memory architecture. Each processor generates the candidate

itemsets in parallel and stores them in a hash structure which

is shared among all the processors. Each processor scans its

local partition to calculate the support counts of the candidates

and atomically updates the counts of the candidates in the

shared hash structure.

Advantages:

There is no need for the processors to exchange the counts

and carry out the summation to obtain the global counts of the

candidates.

Disadvantages:

It uses complex hash structures which incur additional

overhead of maintaining and searching as it is poor cache

locality.

4.5 Equivalence Class Transformation

Algorithm(Eclat) [9]
It has four phases namely the initialization phase,

transformation phase, asynchronous phase and the final

reduction phase.

Phase 1: Initialization phase

Each processor computes the frequent 2-itemsets L2.

Each processor scans the local partition and

generates frequent 2-itemsets L2. Each processor

then communicates the support counts of L2 to the

other processors to construct global frequent 2-

itemsets.

Phase 2: Transformation phase

L2 is partitioned using equivalence class partitioning

and these partitions are then assigned to the

processors. Each processor scans its local database

and constructs partial tid lists for frequent 2-

itemsets. Each processor sends the tid lists for the

itemsets belonging to the other processors so that

each processor can construct the global tid lists for

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 8, March 2014

23

the itemsets in its equivalence classes. At the end of

this phase the database is redistributed.

Phase 3: Asynchronous phase

Each processor independently computes the

frequent itemsets eliminating the need of

synchronization among the processors.

Phase 4: Final reduction phase

The results are accumulated from each processor.

Advantages:

It groups the related frequent itemsets together using the

equivalence class partitioning. It utilizes the total memory of

the system by partitioning the candidates into disjoint sets

using equivalence class partitioning. Since the processors are

decoupled right in the beginning, no synchronization is

required. It uses vertical database layout which facilitates fast

counting using simple intersections. Each processor computes

all the frequent itemsets from one equivalence class before

proceeding to the next. It does not pay the cost of building and

searching complex data structures. Since it uses vertical

database layout the local partitions are scanned only once.

Disadvantages:

It needs to generate and redistribute the vertical tid lists whose

size is comparable to the original database. It may need

roughly twice the disk space as the algorithm uses horizontal

layout for the initial phase and vertical layout thereafter.

4.6 Parallel Partition Algorithm [1]
It presents the parallelization of the sequential partition

algorithm. It uses client server architecture. The coordinator

acts as server and the processors act as clients. It consist of

four phases.

Phase 1: Each processor scans its local partition and

generates local frequent itemsets and sends it to the

coordinator.

Phase 2: After receiving the local frequent itemsets from all

the processors, the coordinator takes the union of all

these local frequent itemsets to generate global

candidates. The coordinator sends these global

candidates to all the processors. At the end of this

phase, all the processors have identical candidate

itemsets.

Phase 3: Each processor computes the local support counts of

the global candidates and sends them to the

coordinator.

Phase 4: The coordinator generates the global frequent

itemsets by taking the summation of the local

support counts received from the processors.

Advantages:

It needs to synchronize in only two phases. Since it uses

vertical database layout, simple intersections are used which

speed up the counting process.

Disadvantages:

It transfers frequent itemsets, global candidates and counts in

three phases and it does not generate accurate frequent

itemsets.

Table 1. Comparative analysis of parallel apriori algorithms

Algorithm

Number of

Messages

Exchanged

Type of messages

exchanged

Synchronization

Required

Database

Layout
Architecture

Count Distribution

Algorithm

n(n-1)

(in each pass)

local counts

(in each pass)

Yes

(after each pass)
Horizontal Shared-Nothing

Data Distribution

Algorithm

n(n-1)

(in each pass)

local frequent

itemsets

(in each pass)

Yes

(after each pass)
Horizontal Shared-Nothing

Candidate Distribution

Algorithm

n(n-1)

(in initial passes)

local frequent

itemsets for initial

passes and database

is repartitioned

No Horizontal Shared-Nothing

Common Candidate

Partitioned Database

Algorithm

none not applicable
Yes

(after each pass)
Horizontal Shared-Memory

Equivalence Class

Transformation

Algorithm

n(n-1)

(in two phases)

local counts in

initialization phase

and tid lists in

transformation

phase and database

is repartitioned

No
Horizontal and

Vertical
Shared-Nothing

Parallel Partition

Algorithm

3n

(in three phases)

local frequent

itemsets in phase 1,

global candidates in

phase 2 and local

counts in phase 3

Yes

(in phase 2 and

phase 4)

Vertical Client-Server

International Journal of Computer Applications (0975 – 8887)

Volume 90 – No 8, March 2014

24

5. CONCLUSION
The performance of the parallel apriori algorithms depends on

the processing time and the data communication cost. The

data communication cost can be reduced by using client-

server architecture like Parallel Partitioning Algorithm and

exchanging only the counts as in Count Distribution

Algorithm. The processing time depends on the database

layout, number of times the database is scanned and the size

of the candidates generated. Vertical database layout speeds

up the searching process as demonstrated in the Eclat

Algorithm and reduces the database scanning time. Thus a

parallel apriori algorithm using client-server architecture with

only counts exchanged and using vertical database layout can

achieve balanced trade-off between the processing time and

the data communication cost.

6. REFERENCES
[1] Khadidja Belbachir, Hafida Belbachir, “The

Parallelization of Algorithm Based on Partition Principle

for Association Rules Discovery”, In Proceedings of

International Conference on Multimedia Computing and

Systems(ICMCS), IEEE, May 2012.

[2] Ruowu Zhong, Huiping Wang, “Research of Commonly

Used Association Rules Mining Algorithm in Data

Mining”, In Proceedings of International Conference on

Internet Computing and Information Services(ICICIS),

IEEE, September 2011.

[3] V.Umarani, Dr.M.Punithavalli, “A Study On Effective

Mining Of Association Rules From Huge Databases”,

International Journal of Computer Science and Research

(IJCR), Vol. 1 Issue 1, 2010.

[4] Xindong Wu , Vipin Kumar, J. Ross Quinlan, Joydeep

Ghosh, Qiang Yang ,Hiroshi Motoda, “Top 10

Algorithms in Data Mining”, Knowledge and

Information Systems, Volume 14, Issue 1, pp 1-37,

Springer, January 2008.

[5] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, Wei Li, “Parallel Data Mining for Association

Rules on Shared-Memory Systems”, Data Mining and

Knowledge Discovery, Springer, 2001.

[6] Eui-Hong (Sam) Han, George Karypis, Vipin Kumar,

“Scalable Parallel Data Mining for Association Rules”,

IEEE Transactions on Knowledge and Data Engineering,

Volume:12 , Issue: 3, May/June 2000.

[7] Mohammed J. Zaki, “Parallel and Distributed

Association Mining: A Survey”, IEEE Concurrency, Vol

7, Issue 4, pp 14-25, October 1999.

[8] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, Wei Li, “Parallel Algorithms for Discovery of

Association Rules”, Data Mining and Knowledge

Discovery, Vol 1, Issue 4, pp 343-373, Springer,

December 1997.

[9] Mohammed J. Zaki, Srinivasan Parthasarathy, Mitsunori

Ogihara, Wei Li, “A Localized Algorithm for Parallel

Association Mining”, Proceedings of the ninth annual

ACM symposium on Parallel algorithms and

architectures, ACM 1997.

[10] Rakesh Agrawal, John C. Shafer, “Parallel Mining of

Association Rules”, IEEE Transactions on Knowledge

and Data Engineering, December 1996.

IJCATM : www.ijcaonline.org

