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ABSTRACT 

Apriori Algorithms are used on very large data sets with high 

dimensionality. Therefore parallel computing can be applied 

for mining of association rules. The process of association 

rule mining consists of finding frequent item sets and 

generating rules from the frequent item sets. Finding frequent 

itemsets is more expensive in terms of CPU power and 

computing resources utilization. Thus majority of parallel 

apriori algorithms focus on parallelizing the process of 

frequent item set discovery. The computation of frequent item 

sets mainly consist of creating the candidates and counting 

them. The parallel frequent itemsets mining algorithms 

addresses the issue of distributing the candidates among 

processors such that their counting and creation is effectively 

parallelized. This paper presents comparative study of these 

algorithms.  
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1. INTRODUCTION 
Accumulation of abundant data from different sources of the 

society but a little knowledge situation has lead to knowledge 

discovery from databases which is called data mining. Data 

mining techniques use the existing data and retrieve the useful 

information from it which is not directly visible in the original 

data. As data mining algorithms deal with huge data, the 

primary concerns are how to store the data in the main 

memory at run time and how to improve the run time 

performance. Sequential algorithms cannot provide 

scalability, in terms of the data dimension, size, or runtime 

performance, for such huge databases. Because the data sizes 

are increasing to a large quantity, high-performance parallel 

and distributed computing is used to get the advantage of 

more than one processor to handle these huge quantities of 

data. 

Data mining deals with large volumes of data to extract the 

useful knowledge. Association Rule Mining (ARM) or 

frequent itemset mining is an important functionality of data 

mining. The apriori algorithm is one of the best algorithms for 

finding frequent itemsets from a transaction database. As data 

mining mainly deals with large volumes of data, the main 

concern is how to improve the performance of the algorithm. 

One way of improving the performance of apriori is 

parallelizing the process of generating frequent itemsets. 

The rest of the paper is organized as follows. In Section 2 the 

related work is overviewed. In Section 3 the basic concepts of 

association rule mining are discussed and apriori algorithm is 

described. In Section 4 a comparative analysis of the parallel 

apriori algorithms is given. In Section 5 conclusion is given. 

2. RELATED WORK 
Many parallel ARM algorithms have been proposed which 

represent transactions using either horizontal data format or 

vertical data format [4,7]. In horizontal data format, data is 

represented as transaction ID versus items sold in each 

transaction whereas in vertical data format, data is represented 

as each item versus transaction ids in which the item is sold. 

The parallel ARM algorithms are broadly classified as data set 

partitioning Algorithms, Breadth-First Algorithms, Depth-

First Algorithms, Sampling Algorithms and Incremental 

Update Algorithms[2,3]. There are several parallel association 

rule mining algorithms proposed based on data set partitioning 

like Count Distribution, Data Distribution, Candidate 

Distribution, Common Candidate Partitioned, Eclat, Parallel 

Partition [1,5,9,10].  There are various surveys carried out on 

these algorithms[2,6,7,8]. 

3. ASSOCIATION RULE MINING 

3.1 Basic Concept 
The basic concept of association rule mining is originated 

from the market basket analysis. Let D be the transaction 

database which consists of the transaction records 

{T1,T2,…,Tn} of the customers. Each transaction T consists 

of the items purchased by the customers in one visit of the 

super market. The items are the subset of the set of whole 

items I {I1, I2,…., Im} in the super market that are considered 

for analysis. An itemset consists of some combination of 

items which occur together or a single item from I. 

Association rule mining X->Y, represents the dependency 

relationship between two different itemsets X and Y in the 

database. The relationship is whenever X is occurring in any 

transaction, there is a probability that Y may also occur in the 

same transaction. This occurrence is based on two interesting 

measures.  

Support: It represents the percentage of transactions in D that 

contain X ∪  Y  and it is given by  

support(X->Y) =  (  ∪  ). 

 

Confidence: It gives the percentage of transactions in D 

containing X that also contain Y and it is given as 

confidence(X->Y) =  ( / ). 
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3.2 Apriori Algorithm 
Apriori algorithm is the most classical association rule mining 

algorithm. It is based on the apriori principle that all the 

nonempty subsets of a frequent itemset must be frequent. It is 

a two step process.  

 

Step 1:  The prune step 

It scans the entire database to find the count of each 

candidate in Ck where Ck represents candidate k-

itemset. The count of each itemset in Ck is 

compared with a predefined minimum support count 

to find whether that itemset can be placed in 

frequent k-itemset Lk.  

Step 2:  The join step 

Lk is natural joined with itself to generate the next 

candidate k+1-itemset Ck+1. The major step here is 

the prune step which requires scanning the entire 

database for finding the count of each itemset in 

every candidate k-itemset. If the database is huge 

then it requires more time to find all the frequent 

itemsets in the database. 

 

4. PARALLEL APRIORI ALGORITHMS 

4.1 Count Distribution Algorithm [10] 
Each processor generates the partial support of all candidate 

itemsets from its local database partition in parallel. At the 

end of each iteration the global supports are generated by 

exchanging the partial support counts among all the 

processors.  All the processors generate the entire candidate 

from Lk-1. Each processor thus independently compute the 

partial supports of the candidates from its local database  

partition. Then each processor exchanges its local counts of 

Ck with all the other processors to generate the global Ck 

counts. Each processor then computes Lk from Ck. Once the 

global Lk has been determined, each processor builds Ck+1 in 

parallel and repeats the process until all frequent itemsets are 

found. 

 

Advantages: 

It minimizes the communication cost as only counts are 

exchanged among the processors and speeds up the 

summation process as only vector summation is to be carried 

out rather than matching the candidates first and then finding 

their sum.  

 

Disadvantages: 

Since the entire hash tree is replicated on each processor, it 

does not utilize the total memory of the system efficiently. 

4.2 Data Distribution Algorithm [10] 
It generates the frequent 1-itemset by using count distribution 

algorithm. It then partitions the candidates into disjoint sets 

which are assigned to different processors. Each processor 

calculates the support counts for the itemsets in its local 

candidates by scanning the local partition and the remote 

partitions to generate the local frequent itemsets in all 

iterations. At the end of each iteration, processors exchange 

local frequent itemsets with the other processors so that each 

processor has the complete Lk for generating Ck+1.  

 

Advantages: 

It utilizes the total system memory efficiently by generating 

disjoint candidate sets on each processor. The summation 

need not be carried out since the local frequent itemsets are 

disjoint. 

Disadvantages: 

It suffers from huge communication cost. 

4.3 Candidate Distribution Algorithm [10] 
For the initial passes it uses either Count Distribution or Data 

Distribution algorithm. Then in some pass I which is 

heuristically determined, this algorithm divides the frequent 

itemsets Lk-1 among the processors in such a way that each 

processor can generate unique candidate sets independent of 

the other processors. Data is selectively replicated so that each 

processor can calculate the counts of the candidate sets 

independent of other processors. 

 

Advantages:  

It removes the processor dependence so that the processors 

can proceed independently without synchronizing at the end 

of each pass.  

 

Disadvantages:  

It suffers from huge communication cost of redistributing the 

database and scans the local partitions repeatedly. The 

communication gains of independent processing are not 

sufficient to offset the database redistribution cost. 

4.4 Common Candidate Partitioned 

Algorithm(CCPD) [5] 
It is same as the count distribution algorithm. It uses shared 

memory architecture. Each processor generates the candidate 

itemsets in parallel and stores them in a hash structure which 

is shared among all the processors. Each processor scans its 

local partition to calculate the support counts of the candidates 

and atomically updates the counts of the candidates in the 

shared hash structure. 

 

Advantages: 

There is no need for the processors to exchange the counts 

and carry out the summation to obtain the global counts of the 

candidates. 

 

Disadvantages:   

It uses complex hash structures which incur additional 

overhead of maintaining and searching as it is poor cache 

locality. 

4.5 Equivalence Class Transformation 

Algorithm(Eclat) [9] 
It has four phases namely the initialization phase, 

transformation phase, asynchronous phase and the final 

reduction phase. 

 

Phase 1: Initialization phase  

Each processor computes the frequent 2-itemsets L2. 

Each processor scans the local partition and 

generates frequent 2-itemsets L2. Each processor 

then communicates the support counts of L2 to the 

other processors to construct global frequent 2-

itemsets.  

Phase 2:  Transformation phase 

L2 is partitioned using equivalence class partitioning 

and these partitions are then assigned to the 

processors. Each processor scans its local database 

and constructs partial tid lists for frequent 2-

itemsets. Each processor sends the tid lists for the 

itemsets belonging to the other processors so that 

each processor can construct the global tid lists for 



International Journal of Computer Applications (0975 – 8887)  

Volume 90 – No 8, March 2014 

23 

the itemsets in its equivalence classes. At the end of 

this phase the database is redistributed.  

Phase 3:  Asynchronous phase  

Each processor independently computes the 

frequent itemsets eliminating the need of 

synchronization among the processors. 

Phase 4: Final reduction phase  

The results are accumulated from each processor. 

 

Advantages: 

It groups the related frequent itemsets together using the 

equivalence class partitioning. It utilizes the total memory of 

the system by partitioning the candidates into disjoint sets 

using equivalence class partitioning. Since the processors are 

decoupled right in the beginning, no synchronization is 

required. It uses vertical database layout which facilitates fast 

counting using simple intersections. Each processor computes 

all the frequent itemsets from one equivalence class before 

proceeding to the next. It does not pay the cost of building and 

searching complex data structures. Since it uses vertical 

database layout the local partitions are scanned only once. 

 

Disadvantages: 

It needs to generate and redistribute the vertical tid lists whose 

size is comparable to the original database. It may need 

roughly twice the disk space as the algorithm uses horizontal 

layout for the initial phase and vertical layout thereafter. 

4.6 Parallel Partition Algorithm [1] 
It presents the parallelization of the sequential partition 

algorithm. It uses client server architecture. The coordinator 

acts as server and the processors act as clients. It consist of 

four phases. 

 

Phase 1:  Each processor scans its local partition and 

generates local frequent itemsets and sends it to the 

coordinator. 

Phase 2:  After receiving the local frequent itemsets from all 

the processors, the coordinator takes the union of all 

these local frequent itemsets to generate global 

candidates. The coordinator sends these global 

candidates to all the processors. At the end of this 

phase, all the processors have identical candidate 

itemsets. 

Phase 3:  Each processor computes the local support counts of 

the global candidates and sends them to the 

coordinator. 

Phase 4:  The coordinator generates the global frequent 

itemsets by taking the summation of the local 

support counts received from the processors. 

 

Advantages: 

It needs to synchronize in only two phases. Since it uses 

vertical database layout, simple intersections are used which 

speed up the counting process. 

 

Disadvantages: 

It transfers frequent itemsets, global candidates and counts in 

three phases and it does not generate accurate frequent 

itemsets. 

 

Table 1. Comparative analysis of parallel apriori algorithms 

Algorithm 

Number of 

Messages 

Exchanged 

Type of messages 

exchanged 

Synchronization 

Required 

Database 

Layout 
Architecture 

Count Distribution 

Algorithm 

n(n-1) 

(in each pass) 

local counts 

(in each pass) 

Yes 

(after each pass) 
Horizontal Shared-Nothing 

Data Distribution 

Algorithm 

n(n-1) 

(in each pass) 

local frequent 

itemsets 

(in each pass) 

Yes 

(after each pass) 
Horizontal Shared-Nothing 

Candidate Distribution 

Algorithm 

n(n-1) 

(in initial passes) 

local frequent 

itemsets for initial 

passes and database 

is repartitioned 

No Horizontal Shared-Nothing 

Common Candidate 

Partitioned Database 

Algorithm 

none not applicable 
Yes 

(after each pass) 
Horizontal Shared-Memory 

Equivalence Class 

Transformation 

Algorithm 

n(n-1) 

(in two phases) 

 

local counts in 

initialization phase 

and tid lists in 

transformation 

phase and database 

is repartitioned 

No 
Horizontal and 

Vertical 
Shared-Nothing 

Parallel Partition 

Algorithm 

3n 

(in three phases) 

local frequent 

itemsets in phase 1, 

global candidates in 

phase 2 and local 

counts in phase 3 

Yes 

(in phase 2 and 

phase 4) 

Vertical Client-Server 
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5. CONCLUSION 
The performance of the parallel apriori algorithms depends on 

the processing time and the data communication cost. The 

data communication cost can be reduced by using client-

server architecture like Parallel Partitioning Algorithm and 

exchanging only the counts as in Count Distribution 

Algorithm. The processing time depends on the database 

layout, number of times the database is scanned and the size 

of the candidates generated. Vertical database layout speeds 

up the searching process as demonstrated in the Eclat 

Algorithm and reduces the database scanning time. Thus a 

parallel apriori algorithm using client-server architecture with 

only counts exchanged and using vertical database layout can 

achieve balanced trade-off between the processing time and 

the data communication cost. 
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